知网查重怎么查?新手帮助CNKI知网查重检测系统入口:国知网论文查重系统后该系统首先会对论文的格式进行自动识别,根据格式自动识别进行论文查重范围的规定
发布时间:2022-05-08 01:00:20 作者:知网小编 来源:www.it54.cn
图像质量评估算法的目标是自动评估与人的主观质量判断相一致的客观图像质量。 然而,主观评估费时费力,在实际应用中不可行,并且主观实验受观看距离、显示设备、照明条件、观测者的视觉能力、情绪等诸多因素影响。 因此,有必要设计出能够自动精确的预测主观质量的数学模型。 IQA按照原始参考图像提供信息的多少一般分成3类:全参考 (Full Reference-IQA, FR-IQA)、半参考 (Reduced Reference-IQA, RR-IQA)和无参考 (No Reference-IQA, NR-IQA), 无参考也叫盲参考 (Blind IQA, BIQA)。 FR-IQA同时有原始 (无失真、参考)图像和失真图像,难度较低,核心是对比两幅图像的信息量或特征相似度,是研究比较成熟的方向。
通常,图像质量的绝对评价都是观察者参照原始图像对待定图像采用双刺激连续质量分级法(Double Stimulus Continuous Scale,DSCQS),给出一个直接的质量评价值。 具体做法是将待评价图像和原始图像按一定规则交替播放持续一定时间给观察者,然后在播放后留出一定的时间间隔供观察者打分,最后将所有给出的分数取平均作为该序列的评价值,即该待评图像的评价值。 国际上也对评价尺度做出了规定,对图像质量进行等级划分并用数字表示,也称为图像评价的5分制“全优度尺度”。 (见表1.1) 相对评价中没有原始图像作为参考,是由观察者对一批待评价图像进行相互比较,从而判断出每个图像的优劣顺序,并给出相应的评价值。
衡量图像质量评估结果的指标有很多,每种指标都有自己的特点,通常比较模型客观值与观测的主观值之间的差异和相关性。 常见的2种评估指标是线性相关系数(Linear Correlation Coefficient, LCC)和Spearman秩相关系数(Spearman's Rank Order Correlation Coefficient, SROCC)。